Managing Inputs
FluxLoop manages inputs through the Inputs view in the VSCode extension. Inputs are the prompts and data your AI agent processes during experiments.
Viewing Inputs
Open the Inputs view in the FluxLoop activity bar to see everything related to scenarios:
- Configuration – Settings and base input from
configs/input.yaml - Generated Inputs – Variations created via the wizard, annotated with strategy + persona
Clicking any entry opens the underlying YAML. The panel refreshes automatically whenever configuration files change.
Configuration
The Configuration folder contains:
Open Configuration
Click to open configs/input.yaml directly in the editor.
Base Input
Shows the primary seed input (first entry in base_inputs) that drives generation:
base_inputs:
- input: "How can I track my order?"
expected_intent: "order_tracking"
The base input is the foundation for all variation strategies. Only the first base input is displayed in the tree for simplicity.
Generating Input Variations
Generate variations from base inputs using LLM or deterministic strategies.
From Inputs View
- Click Generate New Inputs…
- Configure the wizard:
- Generation Mode – Deterministic or LLM
- Base Input Confirmation – Review the primary base input
- Select Use Input to proceed
- Select Edit in configuration to open
configs/input.yamland modify
- Strategies – Pick one or more strategies (rephrase, verbose, concise, error_prone, etc.)
- Pre-selected based on
variation_strategiesinconfigs/input.yaml - Your selections are saved back to
variation_strategiesfor next time
- Pre-selected based on
- Variation Limit – Number of outputs per base input
- Output File – Defaults to
inputs/generated.yaml(auto-populated from config) - Overwrite / Append – Control whether the existing file should be replaced
- Dry Run – Preview results without writing files
- LLM Provider & API Key – Prompt appears for LLM mode; the key can be saved to VS Code secret storage and appended to
.envif you approve
Generated inputs immediately appear under Generated Inputs with metadata (strategy, persona, timestamp). Double-click any entry to open the YAML.
From Command Palette
FluxLoop: Generate Inputs
From Terminal
fluxloop generate inputs --mode llm --strategy rephrase --limit 5
Input Strategies
Available variation strategies:
| Strategy | Description | Mode |
|---|---|---|
rephrase | Reword while preserving intent | LLM |
verbose | Add detail and context | LLM |
concise | Shorten to essential points | LLM |
error_prone | Introduce typos or ambiguity | LLM |
typo | Add typos/errors | LLM |
persona_based | Based on persona characteristics | LLM |
adversarial | Edge cases and attacks | LLM |
multilingual | Different languages | LLM |
custom | Custom variation prompt | LLM |
Configure default strategies in configs/input.yaml:
variation_strategies:
- rephrase
- verbose
These will be pre-selected in the wizard and updated when you make changes.
Recordings (Advanced)
Recordings capture actual function arguments during runtime for replay in experiments.
Enable Recording Mode
From the Experiments view, expand Recording (Advanced) and click:
- Enable Recording to turn on argument capture
- Disable Recording to turn it off
Or from terminal:
fluxloop record enable
fluxloop record disable
This updates:
.env: SetsFLUXLOOP_RECORD_ARGS=true/falseconfigs/simulation.yaml: Enables/disablesreplay_args.enabled
Capture Arguments
- Run your application normally
- FluxLoop SDK captures arguments to
recordings/args_recording.jsonl - Each entry includes function name, args, kwargs, timestamp
Using Recorded Arguments in Experiments
Edit configs/simulation.yaml:
replay_args:
enabled: true
recording_file: "recordings/args_recording.jsonl"
override_param_path: "data.content" # Path to inject generated input
Now when you run experiments, FluxLoop:
- Loads recorded arguments
- Replaces the field at
override_param_pathwith generated input variations - Replays each modified call
Environment Considerations
Input generation and experiments depend on your Python environment.
Ensure Correct Environment
Before generating inputs or running experiments:
- Run
FluxLoop: Show Environment Info - Confirm CLI, SDK, and MCP packages live inside the detected interpreter
- Adjust with
FluxLoop: Select Environment(Auto / Workspace / Global / Custom) - If you run commands with wrappers (
uv run,pipx run), configure them once viaFluxLoop: Configure Execution Wrapper
See Environment Configuration for the full matrix.