Skip to main content

Welcome to FluxLoop

Ship Agents with Data. Scale Business.โ€‹

๐ŸŽฏ Simulate at Scaleโ€‹

Run thousands of realistic multi-turn scenarios in parallel. Find edge cases before production.

๐Ÿ“Š Align to Your Standardsโ€‹

Capture your implicit decision criteria. Turn intuition into automated evaluation.

๐Ÿš€ Act on Insightsโ€‹

Reports that show what to fix and how. Analysis that drives action.


FluxLoop is an open-source toolkit for running reproducible, offline-first simulations of AI agents against dynamic scenarios. It empowers developers to rigorously test agent behavior, evaluate performance against custom criteria, and build confidence before shipping to production.

Why FluxLoop?โ€‹

Building trustworthy AI agents requires systematic testing and evaluation. FluxLoop provides:

  • Local-first simulation: Run experiments on your machine with full control
  • Framework-agnostic: Works with any agent framework (LangGraph, LangChain, custom)
  • Argument replay: Record complex function calls once, replay them hundreds of times
  • Structured artifacts: Auditable JSON/JSONL outputs following a documented contract

Quick Startโ€‹

Get started in minutes:

# Install packages
pip install fluxloop-cli fluxloop

# Initialize project
fluxloop init project --name my-agent
cd fluxloop/my-agent

# Generate inputs
fluxloop generate inputs --limit 50

# Run experiment
fluxloop run experiment

Documentation Structureโ€‹

Core Conceptsโ€‹

๐ŸŽฏ Decorator-Based Instrumentationโ€‹

Add @fluxloop.agent() to your agent function:

import fluxloop

@fluxloop.agent()
def run(input_text: str) -> str:
return f"Response to: {input_text}"

๐Ÿ”„ Input Generationโ€‹

Generate variations using LLM or deterministic strategies:

fluxloop generate inputs --limit 100

๐Ÿงช Offline Simulationโ€‹

Run experiments locally without cloud dependencies:

fluxloop run experiment

๐Ÿ“Š Structured Outputโ€‹

Every simulation produces auditable artifacts:

  • summary.json - Aggregate statistics
  • trace_summary.jsonl - Per-trace summary records
  • observations.jsonl - Observation stream
  • traces.jsonl - Detailed execution traces

What's Next?โ€‹

Choose your path:


Ready to build trustworthy AI agents? Let's get started! ๐Ÿš€